
TOYOTA

Бензиново-электрический Hybrid Synergy Drive

РУКОВОДСТВО ПО РАЗБОРКЕ ГИБРИДНОГО АВТОМОБИЛЯ

Предисловие

Настоящее руководство разработано в образовательных целях и для помощи в осуществлении безопасной разборки автомобилей Toyota PRIUS +/PRIUS v с гибридными бензиново-электрическими двигателями. Процедуры разборки гибридных автомобилей PRIUS +/PRIUS v схожи с соответствующими процедурами для негибридных автомобилей Toyota за исключением электрической системы высокого напряжения. Важно понимать и знать особенности электрических систем высокого напряжения, а также технические характеристики гибридных автомобилей Toyota PRIUS +/PRIUS v, поскольку механики могут их не знать. Электрическая система высокого напряжения обеспечивает питание компрессора системы кондиционирования, электрического двигателя, генератора и преобразователя/инвертора. Все прочие типовые электрические устройства автомобиля, такие как фары, радиоприемник и шкалы приборов, питаются от отдельной вспомогательной аккумуляторной батареи 12 В. Для гибридных автомобилей PRIUS +/PRIUS v разработаны и внедрены многочисленные средства обеспечения безопасности для поддержания высокого напряжения (порядка 201,6 В), и даже при возникновении дорожно-транспортных происшествий обеспечивается надежная и безопасная работа литий-ионной (Li-ion) аккумуляторной батареи в сборе для гибридных автомобилей (HV).

Литий-ионная (Li-ion) высоковольтная АКБ в сборе включает в себя герметичные аккумуляторные батареи, сходные с перезаряжаемыми батареями, используемыми для питания некоторых механических инструментов и прочих потребительских продуктов. Электролит поглощается сетчатыми пластинами, поэтому даже при наличии повреждений АКБ обычно обеспечивается отсутствие утечек. В маловероятных случаях утечки электролит легко нейтрализуется раствором разбавленной борной кислоты или уксуса.

Кабели высокого напряжения распознаются по оранжевому цвету изоляции и разъемов. Они изолированы от металлического шасси автомобиля.

Дополнительные темы, рассматриваемые в данном руководстве, включают следующее.

- Идентификация автомобилей Toyota PRIUS +/PRIUS v
- Расположение и описание основных компонентов гибридной системы.

Руководствуясь представленной в данном руководстве информацией, механики смогут выполнять разборку гибридных автомобилей PRIUS +/PRIUS v так же безопасно, как и разборку обычных негибридных автомобилей.

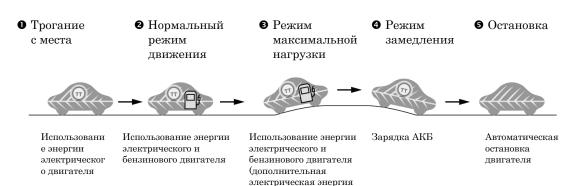
© Toyota Motor Corporation, 2012 г.

Все права защищены. Копирование и воспроизведение иным способом информации, содержащейся в настоящем руководстве, полностью или частично, без письменного разрешения Toyota Motor Corporation запрещается.

Содержание

<u>О гибридных автомобилях PRIUS +/PRIUS v</u>	<u>1</u>
<u>Идентификация PRIUS +/PRIUS v</u>	2
Экстерьер	
<u>Экстерьер</u> Интерьер	
<u>интерьер</u> Моторный отсек	_
моторный отсек	<u>u</u>
Расположение и описание компонентов гибридной системы	<u>6</u>
Технические характеристики	<u>7</u>
<u>Paбota Hybrid Synergy Drive</u>	<u>8</u>
Режимы работы автомобиля	
АКБ для гибридных автомобилей (HV) в сборе и вспомогательная АКБ	9
Высоковольтная АКБ в сборе	
Компоненты, питание которых обеспечивается высоковольтной АКБ в сборе	<u></u> 9
Утилизация высоковольтной АКБ в сборе	<u>10</u>
Вспомогательная аккумуляторная батарея	<u>10</u>
Правила безопасности при работе с высоким напряжением	11
Система безопасности системы высокого напряжения	
Фиксатор сервисного размыкателя цепи	
Меры предосторожности, которые следует соблюдать при разборке автомобиля	13
Необходимые предметы	
<u>Разливы</u>	<u>14</u>
Разборка автомобиля	<u>15</u>
Снятие высоковольтной АКБ	<u>19</u>
Этикетка с предостережением на высоковольтной АКБ	<u>28</u>

О гибридных автомобилях PRIUS +/PRIUS v


Модификации PRIUS +/PRIUS v с кузовом универсал дополняют модельный ряд гибридных автомобилей Toyota, представленный гибридными моделями PRIUS, CAMRY и AURIS. *Hybrid Synergy Drive* означает, что на автомобиле установлен бензиновый и электрический двигатель. В гибридном автомобиле предусмотрено два источника энергии.

- 1. Бензиновый хранится в топливном баке и предназначен для бензинового двигателя.
- 2. Электрический хранится в высоковольтной АКБ гибридного автомобиля (HV) в сборе и предназначен для электрического двигателя.

В результате сочетания этих двух источников энергии экономится топливо и сокращаются токсичные выбросы. Кроме того, бензиновый двигатель приводит в действие генератор для перезарядки АКБ в сборе; в отличие от полностью электрических автомобилей гибридный автомобиль PRIUS +/PRIUS v не нуждается в подзарядке от внешних источников питания.

В зависимости от условий движения привод автомобиля осуществляется от одного или обоих источников энергии. На следующей иллюстрации представлены режимы работы автомобилей PRIUS +/PRIUS v в различных режимах движения.

- При небольшом ускорении на низкой скорости привод автомобиля осуществляется от электродвигателя. Бензиновый двигатель выключен.
- **2** В нормальном режиме движения привод автомобиля осуществляется преимущественно от бензинового двигателя. Кроме того, бензиновый двигатель приводит в действие генератор для перезарядки АКБ в сборе, а также обеспечивает привод электродвигателя.
- В режиме максимальной нагрузки, например, при движении вверх по склону, привод автомобиля осуществляется и от бензинового, и от электрического двигателя.
- В режиме замедления, например, при торможении, автомобиль преобразовывает кинетическую энергию колес в электричество, которое и обеспечивает зарядку АКБ в сборе.
- **6** Когда автомобиль останавливается, бензиновый и электрический двигатели выключаются, однако автомобиль продолжает оставаться в рабочем состоянии.

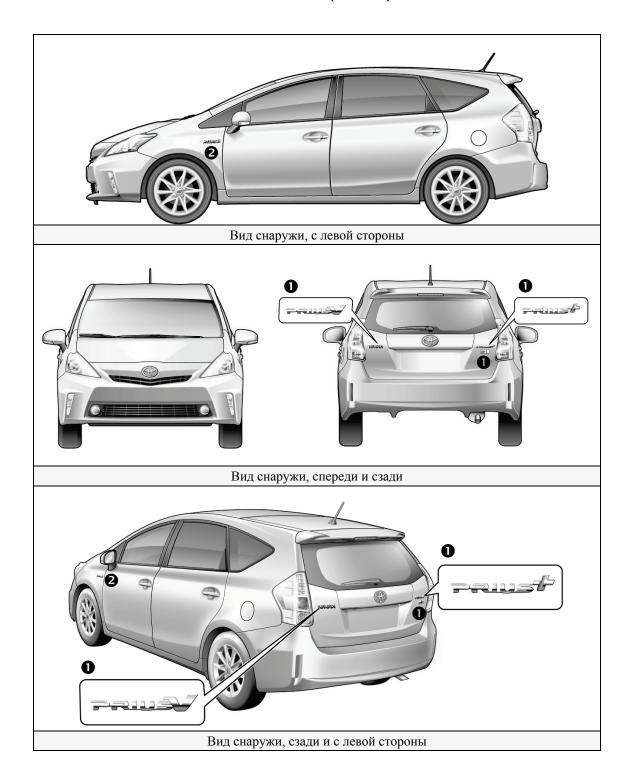
обеспечивается за счет АКБ)

Идентификация PRIUS +/PRIUS v

Внешне автомобили PRIUS +/PRIUS v представляют собой 5-дверный универсал. В целях облегчения идентификации представлены иллюстрации интерьера, экстерьера и моторного отсека.

17-значный буквенно-цифровой идентификационный номер автомобиля (VIN) указан в зоне капота, прилегающего к ветровому стелу, на правой панели пола, а также на левой средней стойке.

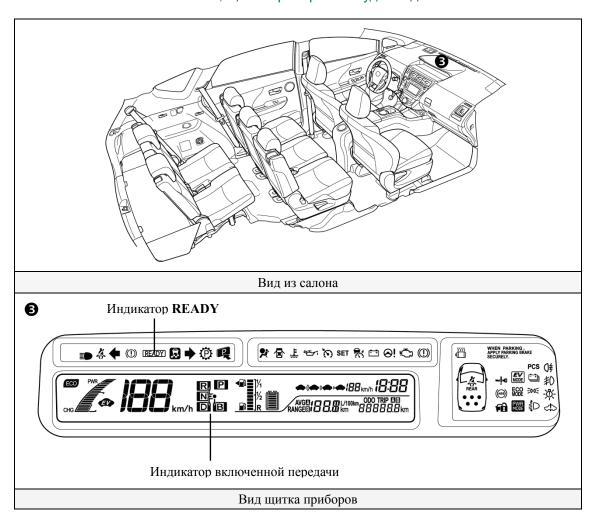
Образец VIN: JTDZS3EU0C3000101


Автомобили PRIUS +/PRIUS v идентифицируются по первым 8 буквенно-цифровым символам **JTDZS3EU**.

Идентификация PRIUS +/PRIUS v (продолжение)

Экстерьер

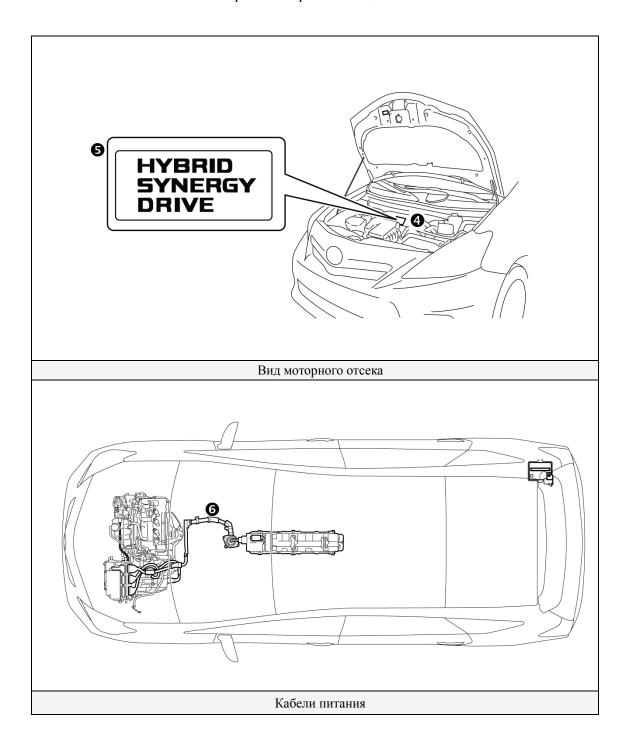
- Пототип на каждом переднем крыле.


Идентификация PRIUS +/PRIUS v (продолжение)

Интерьер

3 Щиток приборов (индикатор **READY**, индикатор включенной передачи), расположенный в центре панели приборов и у основания ветрового стекла.

Рекомендация.


Если зажигание выключено, щиток приборов не будет подсвечиваться.

Идентификация PRIUS +/PRIUS v (продолжение)

Моторный отсек

- **4** Бензиновый двигатель из алюминиевого сплава объемом 1,8 л.
- **6** Логотип на пластиковой крышке двигателя.
- 6 Кабели питания высокого напряжения оранжевого цвета.

Расположение и описание компонентов гибридной системы

Компонент	Расположение	Описание
Вспомогательная АКБ Ф 12 В	Правая сторона багажного отсека	Свинцово-кислотная АКБ, подающая питание устройствам-потребителям низкого напряжения.
АКБ ② для гибридных автомобилей (HV) в сборе	Центральная консоль	Литий-ионная АКБ (Li-ion) в сборе (201,6 В) состоит из 56 модулей низкого напряжения (3,6 В), подключенных последовательно.
Кабели 9 питания	моторный отсек	Оранжевые кабели питания обеспечивают подачу постоянного тока (DC) высокого напряжения в цепь между высоковольтной АКБ в сборе, преобразователем-инвертором и компрессором системы кондиционирования. Эти кабели также обеспечивают подачу 3-фазного переменного тока (AC) в цепь между преобразователем-инвертором, электродвигателем и генератором.
Преобразователь- инвертор 4	Моторный отсек	Усиливает и преобразовывает ток высокого напряжения, подаваемого с высоковольтной АКБ в сборе, в 3-фазное напряжение переменного тока, которое обеспечивает работу электродвигателей. Преобразователь-инвертор также преобразовывает напряжение переменного тока из электрического генератора и электродвигателя (рекуперативное торможение) в постоянный ток, который заряжает высоковольтную АКБ в сборе.
Бензиновый 9 двигатель	Моторный отсек	Выполняет две следующие функции. 1) Обеспечивает привод автомобиля. 2) Обеспечивает привод генератора для перезарядки высоковольтной АКБ в сборе. Управление запуском и остановкой двигателя осуществляется при помощи бортового компьютера.
Электро- двигатель ©	Моторный отсек	3-фазный высоковольтный электродвигатель переменного тока расположен в переднем блоке трансмиссии и ведущего моста. Он используется для привода передних колес.
Электрический 7 генератор	Моторный отсек	3-фазный высоковольтный генератор переменного тока расположен в блоке трансмиссии и ведущего моста. Он обеспечивает зарядку высоковольтной АКБ в сборе.
Компрессор системы кондиционирования (с инвертором) §	Моторный отсек	Компрессор с приводом от 3-фазного высоковольтного электродвигателя переменного тока.
Топливный бак и топливопровод 9	Ходовая часть и центральная часть	Из топливного бака бензин поступает в двигатель через топливопровод. Топливопровод проложен под центральной частью автомобиля.

^{*}Номера в столбце компонентов относятся к иллюстрациям на следующей странице.

Расположение и описание компонентов гибридной системы (продолжение)

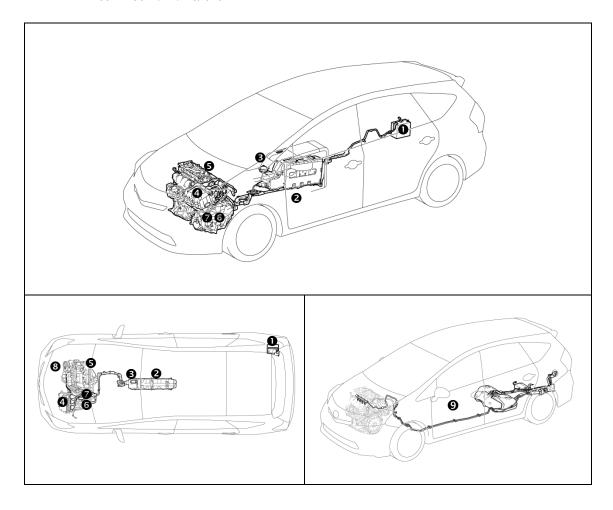
Технические характеристики

Бензиновый двигатель: 98 л. с. (73 кВт), 1,8-л двигатель из алюминиевого сплава

Электродвигатели: 80 л. с. (60 кВт), электродвигатель переменного тока

Трансмиссия: Только автоматическая (бесступенчатый блок трансмиссии и

ведущего моста с электронным управлением)


Высоковольтная АКБ: Герметичная АКБ 201,6 В Li-ion-

Снаряженная масса: 3450 фунтов/1565 кг Топливный бак: 11,9 галлона/45,0 л Материал рамы: Стальной несущий кузов

Материал кузова: Стальные панели кроме алюминиевого капота и опциональной

поликарбонатной крыши

Вместимость: 7 человек

Работа Hybrid Synergy Drive

Как только индикатор **READY** включается на щитке приборов, это означает, что автомобиль готов к движению. Однако бензиновый двигатель не работает в режиме холостого хода, как на обычном автомобиле. Его запуск и остановка осуществляется в автоматическом режиме. Важно распознавать и понимать значение режимов индикатора **READY**, предусмотренного на щитке приборов. Его включение информирует водителя о том, что автомобиль готов к работе, даже если выключен бензиновый двигатель и отсутствует шум в моторном отсеке.

Режимы работы автомобиля

- В автомобилях PRIUS +/PRIUS v бензиновый двигатель можно останавливать и запускать в любое время, пока включен индикатор **READY**.
- Не следует считать, что автомобиль не находится в рабочем состоянии, если отключен бензиновый двигатель. Всегда обращайте внимание на состояние индикатора **READY**. Автомобиль только тогда находится в нерабочем состоянии, когда индикатор **READY** выключен.

Привод автомобиля может осуществляться от следующих источников.

- 1. Только от электродвигателя.
- 2. Одновременно от электродвигателя и бензинового двигателя.

АКБ для гибридных автомобилей (HV) в сборе и вспомогательная АКБ

Ha PRIUS +/PRIUS v устанавливается высоковольтная АКБ для гибридного автомобиля (HV) в сборе, которая включает в себя герметичные модули литий-ионных (Li-ion) батарей.

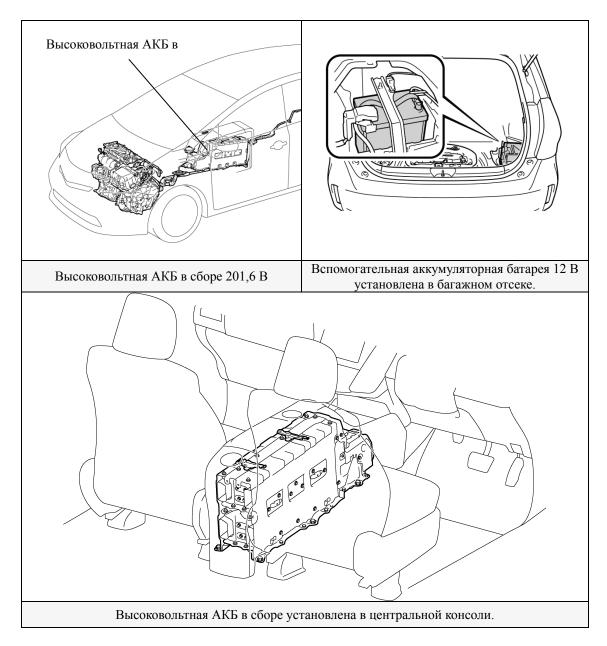
Высоковольтная АКБ в сборе

- Высоковольтная АКБ в сборе помещена в металлический корпус и жестко закреплена в центральной консоли. Металлический корпус изолирован от высокого напряжения.
- Высоковольтная АКБ в сборе состоит из 56 модулей литий-ионных батарей (Li-ion; 3,6 В), подключенных последовательно, что позволяет обеспечить напряжение порядка 201,6 В. Каждый модуль АКБ Li-ion выполнен герметичным и помещен в металлический корпус.
- Используемый в АКБ Li-ion электролит представляет собой легковоспламеняемое органической вещество. Электролит поглощается сепараторами модулей АКБ, поэтому даже при ударе обеспечивается отсутствие утечек.

Высоковольтная АКБ в сборе				
Напряжение АКБ в сборе	201,6 B			
Количество модулей батареи Li-ion в блоке.	56			
Напряжение модуля батареи Li-ion	3,6 B			
Размеры модуля батареи Li-ion	4,4 x 0,6 x 4,4 дюйма (111 x 14 x 112 мм)			
Вес модуля батареи Li-ion	0,55 фунта (0,25 кг)			
Размеры АКБ Li-ion в сборе	32,7 х 8,7 х 14,6 дюйма (830 х 220 х 370 мм)			
Вес батареи Li-ion в сборе	69 фунтов (31,5 кг)			

Компоненты, питание которых обеспечивается высоковольтной АКБ в сборе

- Электродвигатель
- Кабели питания
- Электрический генератор
- Электродвигатель преобразователя-инвертора
- Компрессор системы кондиционирования


АКБ для гибридных автомобилей (HV) в сборе и вспомогательная АКБ (продолжение)

Утилизация высоковольтной АКБ в сборе

• Высоковольтная АКБ в сборе подлежит утилизации. Свяжитесь с дистрибьютором Toyota, указанным на этикетке с предостережением на высоковольтной АКБ (см. стр. 28), или с ближайшим дилером Toyota.

Вспомогательная аккумуляторная батарея

- На автомобилях PRIUS +/PRIUS v также предусмотрена свинцово-кислотная АКБ 12 В. Эта вспомогательная аккумуляторная батарея 12 В обеспечивает питание электрической системы автомобиля аналогично негибридным автомобилям. Как и на обычных негибридных автомобилях, вспомогательная аккумуляторная батарея заземлена на металлическое шасси автомобиля.
- Вспомогательная аккумуляторная батарея размещена в багажном отсеке. Она скрыта под полкой багажного отсека и дополнительным отсеком в нише в задней боковой части кузова с правой стороны.

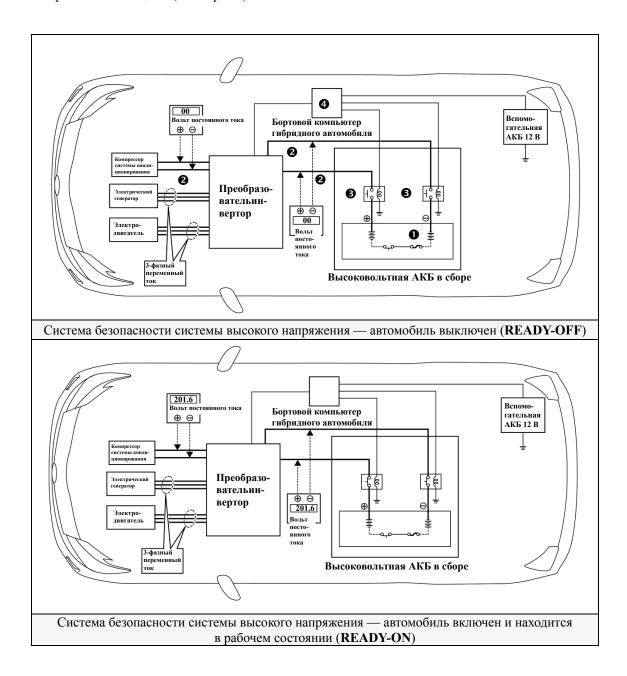
Правила безопасности при работе с высоким напряжением

Высоковольтная АКБ в сборе обеспечивает питание высоковольтной электрической системы постоянным током. Положительный и отрицательный кабели питания высокого напряжения оранжевого цвета проложены от АКБ в сборе (под днищем кузова) к преобразователь-инвертору. Преобразователь-инвертор включает цепь, которая повышает напряжение высоковольтной АКБ с 201,6 до 650 В постоянного тока. Преобразователь-инвертор генерирует 3-фазный переменный ток для питания электродвигателей. Кабели питания проложены от преобразователя-инвертора к каждому высоковольтному электродвигателю (электродвигатель, генератор и компрессор системы кондиционирования). Следующие системы предназначены для защиты водителя и пассажиров автомобиля, а также сотрудников аварийно-спасательных подразделений от высокого напряжения.

Система безопасности системы высокого напряжения

- Предохранитель **①** высокого напряжения* обеспечивает защиту от коротких замыканий высоковольтной АКБ в сборе.
- Положительные и отрицательные кабели питания высокого напряжения **②*** подключаются к высоковольтной АКБ в сборе и управляются 12 В реле с нормально разомкнутыми контактами **③***. Когда автомобиль не находится в рабочем состоянии, реле прекращают подачу тока с высоковольтной АКБ в сборе.

1 предупреждение!


- Система высокого напряжения может оставаться под напряжением в течение до 10 минут после перевода автомобиля в нерабочее состояние. Для предотвращения серьезных травм и смертельного исхода от тяжелых ожогов или поражения электрическим током, необходимо не допускать касания, перерезания или вскрытия оранжевых кабелей питания высокого напряжения или других компонентов высокого напряжения.
- Положительные и отрицательные кабели питания ②* изолированы от металлического шасси, поэтому возможность поражения электрическим током при касании металлического шасси исключена.
- Устройство контроля короткого замыкания на массу непрерывно контролирует утечки высокого напряжения на металлическое шасси, когда автомобиль находится в рабочем состоянии. При возникновении неисправностей бортовой компьютер гибридного автомобиля **4*** подает команду на включение предупреждающей лампы гибридной системы на щитке приборов.
- Контакты реле высоковольтной АКБ в сборе автоматически размыкаются для прерывания подачи электрического тока при столкновении, достаточном для активации системы SRS.

^{*}Цифры относятся к иллюстрации на следующей странице.

Правила безопасности при работе с высоким напряжением (продолжение)

Фиксатор сервисного размыкателя цепи

• Цепь высокого напряжения отключается путем снятия фиксатора сервисного размыкателя цепи (см. стр. 15).

Меры предосторожности, которые следует соблюдать при разборке автомобиля

Система высокого напряжения может оставаться под напряжением в течение до 10 минут после перевода автомобиля в нерабочее состояние. Для предотвращения серьезных травм и смертельного исхода от тяжелых ожогов или поражения электрическим током, необходимо не допускать касания, перерезания или вскрытия оранжевых кабелей питания высокого напряжения или других компонентов высокого напряжения.

Необходимые предметы

- Защитная одежда, такая как электроизолирующие перчатки, резиновые перчатки, защитные очки и защитная обувь.
- Изоляционная лента, например, электроизолирующая лента с подходящим уровнем электроизоляции.
- Перед тем, как надеть изолирующие перчатки, удостоверьтесь, что они не имеют трещин, разрывов и любых других повреждений. Не надевайте влажные изолирующие перчатки.
- Электрический тестер с возможностью измерения напряжения постоянного тока 750 В и больше.

Разливы

В автомобилях PRIUS +/PRIUS v используются те же стандартные технические жидкости, что и в негибридных автомобилях Toyota, за исключением электролита Li-ion, используемого в высоковольтной АКБ в сборе. Используемый в АКБ Li-ion электролит представляет собой легковоспламеняемое органической вещество. Электролит поглощается сепараторами модулей АКБ, поэтому утечки электролита маловероятны даже при повреждении или трещинах модулей АКБ. Утечки жидкого электролита из АКБ Li-ion быстро испаряются.

ПРЕДУПРЕЖДЕНИЕ!

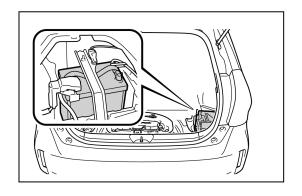
- AKБ Li-ion содержит органический электролит. Возможны утечки небольшого количества электролита, что может оказывать раздражающее воздействие на глаза, нос, горло и кожу.
- Контакт с парами электролита может оказывать раздражающее воздействие на нос и горло.
- Во избежание травм в результате контакта с электролитом или его парами необходимо надевать средства индивидуальной защиты от органических электролитов, включая изолирующий противогаз или респираторы защиты от органических газов.
- При обращении с пролитым электролитом Li-ion необходимо использовать следующие средства индивидуальной защиты (PPE).

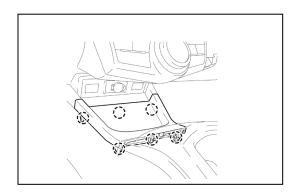
Брызгозащитный щиток или защитные очки. Откидные защитные маски непригодны для защиты от разлитого электролита.

Резиновые или защитные перчатки, пригодные для использования с органическими растворителями

Защитный фартук, пригодный для использования с органическими растворителями Резиновые или защитные ботинки, пригодные для использования с органическими растворителями

Респираторы для органических газов или изолирующие противогазы

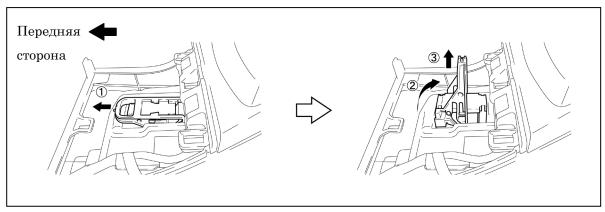

Разборка автомобиля


Следующие 2 страницы содержат общие инструкции по работе с автомобилями PRIUS +/PRIUS v. Ознакомьтесь с данными инструкциями перед тем, как перейти к инструкциям по снятию высоковольтной АКБ на стр. 19.

⚠ ПРЕДУПРЕЖДЕНИЕ!

- Система высокого напряжения может оставаться под напряжением в течение до 10 минут после перевода автомобиля в нерабочее состояние. Для предотвращения серьезных травм и смертельного исхода от тяжелых ожогов или поражения электрическим током, необходимо не допускать касания, перерезания или вскрытия оранжевых кабелей питания высокого напряжения или других компонентов высокого напряжения.
- 1. Выключите зажигание (индикатор **READY** выключен). Затем отсоедините кабель от отрицательной (-) клеммы вспомогательной аккумуляторной батареи.
 - (1) Снимите 3 полки.
 - (2) Снимите 2 дополнительных отсека.
 - (3) Отсоедините отрицательную клемму аккумуляторной батареи.
- 2. Снимите крышку сервисного размыкателя цепи.
 - (1) Снимите крышку консоли.

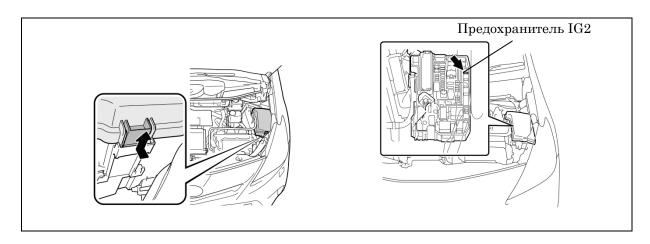
(2) Снимите крышку сервисного размыкателя цепи.

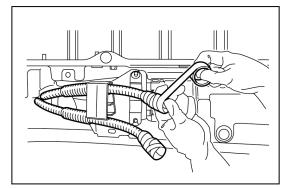


3. Снимите фиксатор сервисного размыкателя цепи.

Внимание!

Для выполнения следующих четырех шагов необходимо надеть электроизолирующие перчатки.


- (1) Переведите ручку фиксатора сервисного размыкателя цепи вперед.
- (2) Поднимите ручку разблокировки фиксатора сервисного размыкателя цепи.
- (3) Снимите фиксатор сервисного размыкателя цепи.
- (4) Нанесите изоляционную ленту на гнездо фиксатора сервисного размыкателя цепи, чтобы изолировать его.


- 4. Носите снятый фиксатор сервисного размыкателя цепи у себя в кармане, чтобы другие механики не смогли случайно установить его во время выполнения разборки автомобиля.
- 5. Доведите до сведения других механиков тот факт, что в настоящий момент выполняется разборка системы высокого напряжения при помощи знака «ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ! НЕ ПРИКАСАТЬСЯ!» (см. стр. 18).
- 6. Если не удается снять фиксатор сервисного размыкателя цепи из-за повреждения автомобиля, снимите предохранитель **IG2** (20 A).

Внимание!

Это действие приводит к отключению системы высокого напряжения. Обязательно наденьте электроизолирующие перчатки, поскольку внутри высоковольтной АКБ все еще имеется высокое напряжение. Если возможно снять фиксатор сервисного размыкателя цепи, снимите его и продолжайте выполнение процедуры.

7. После отсоединения или оголения разъема или клеммы цепи высокого напряжения немедленно изолируйте его с помощью изоляционной ленты. Перед отсоединением или касанием оголенной клеммы высокого напряжения наденьте изолирующие перчатки.

- 8. Проверьте высоковольтную АКБ и прилегающую зону на наличие утечек. Обнаруженная жидкость может быть электролитом Li-ion. При обращении с пролитым электролитом Li-ion необходимо использовать следующие средства индивидуальной защиты (PPE).
 - Брызгозащитный щиток или защитные очки. Откидные защитные маски непригодны для защиты от разлитого электролита.
 - Резиновые или защитные перчатки, пригодные для использования с органическими растворителями
 - Защитный фартук, пригодный для использования с органическими растворителями
 - Резиновые или защитные ботинки, пригодные для использования с органическими растворителями
 - Респираторы для органических газов или изолирующие противогазы

Внимание!

- АКБ Li-ion содержит органический электролит. Возможны утечки небольшого количества электролита, что может оказывать раздражающее воздействие на глаза, нос, горло и кожу.
- Контакт с парами электролита может оказывать раздражающее воздействие на нос и горло.
- Во избежание травм в результате контакта с электролитом или его парами необходимо надевать средства индивидуальной защиты от органических электролитов, включая изолирующий противогаз или респираторы защиты от органических газов.
- 9. Если электролит попал в глаза, громко попросите о помощи. Не трите глаза. Вместо этого промойте глаза разбавленным раствором борной кислоты или большим количеством воды, и обратитесь за медицинской помощью.
- 10. За исключением высоковольтной АКБ, снятие других деталей должно выполняться в соответствии с процедурами, которые идентичны процедурам для негибридных автомобилей Тоуоtа. Процедура снятия высоковольтной АКБ приведена на следующих страницах.

При выполнении работ на высоковольтной системе сложите этот знак и установите на крыше автомобиля.

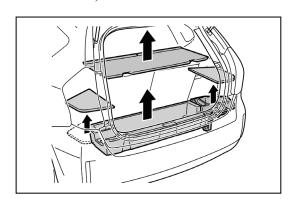
Ответственное лицо:

ВЫСОКОЕ НАПРЯЖЕНИЕ! НЕ ПРИКАСАТЬСЯ!

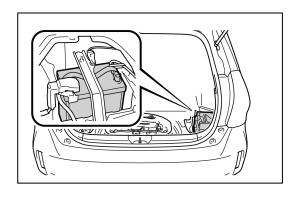
ВНИМАНИЕ!

IBHNMAHNE!

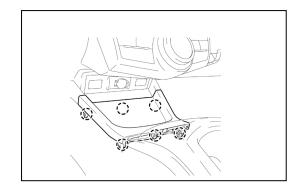
BEICOKOE HANPAMEHUE! HE NEWACATACA!


:оипп еоннеятотеятО

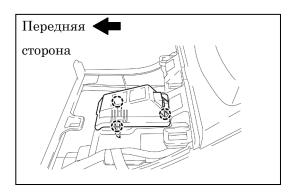
Снятие высоковольтной АКБ



- Обязательно наденьте изолирующие перчатки при работе с деталями под высоким напряжением.
- Даже если автомобиль и реле отключены, обязательно снимите фиксатор сервисного размыкателя цепи перед выполнением дальнейших работ.
- Высоковольтная электрическая система остается под напряжением в течение 10 минут, даже если высоковольтная АКБ в сборе выключена, поскольку в цепи имеется конденсатор, в котором хранится электроэнергия.
- Перед касанием неизолированных клемм высокого напряжения обязательно убедитесь в том, что тестер показывает напряжение 0 В.
- Цепь SRS может оставаться под напряжением в течение до 90 секунд после перевода автомобиля в нерабочее состояние. Для предотвращения серьезных травм и смертельного исхода от непреднамеренной активации SRS не допускайте перерезания компонентов SRS.
- 1. ВЫКЛЮЧИТЕ ЗАЖИГАНИЕ (индикатор **READY** выключен).
- 2. СНИМИТЕ ВСПОМОГАТЕЛЬНУЮ АКБ 12 В.
 - (1) Снимите 3 полки.
 - (2) Снимите 2 дополнительных отсека.



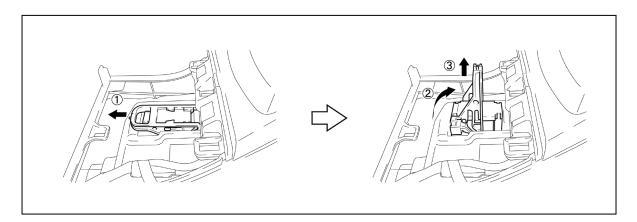
- (3) Отсоедините кабель от отрицательной (-) клеммы вспомогательной аккумуляторной батареи.
- (4) Отсоедините кабель от положительной (+) клеммы вспомогательной аккумуляторной батареи.
- (5) Снимите вспомогательную АКБ 12 В.



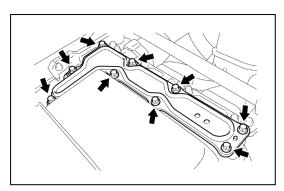
3. СНИМИТЕ КРЫШКУ СЕРВИСНОГО РАЗМЫКАТЕЛЯ ЦЕПИ.

(1) Снимите крышку консоли.

(2) Снимите крышку сервисного размыкателя цепи.



4. СНЯТИЕ ФИКСАТОРА СЕРВИСНОГО РАЗМЫКАТЕЛЯ ЦЕПИ


Внимание!

Для выполнения следующих четырех шагов необходимо надеть электроизолирующие перчатки.

- (1) Переведите ручку фиксатора сервисного размыкателя цепи вперед.
- (2) Поднимите ручку разблокировки фиксатора сервисного размыкателя цепи.
- (3) Снимите фиксатор сервисного размыкателя цепи.
- (4) Нанесите изоляционную ленту на гнездо фиксатора сервисного размыкателя цепи, чтобы изолировать его.

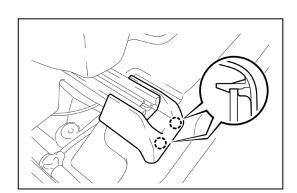
5. СНИМИТЕ 9 БОЛТОВ И КРЫШКУ КЛЕММ ИНВЕРТОРА.

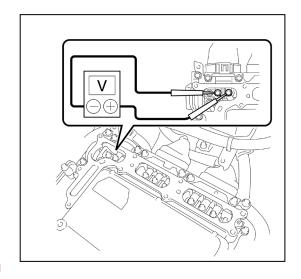
6. ПРОВЕРЬТЕ НАПРЯЖЕНИЕ НА КЛЕММАХ

(1) Проверьте напряжение на клеммах в контрольной точке блока управления электропитанием.

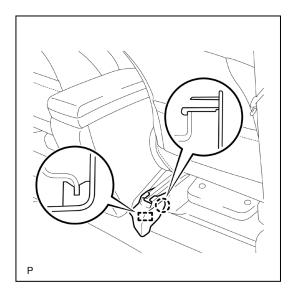
Внимание!

Работайте в электроизолирующих перчатках.

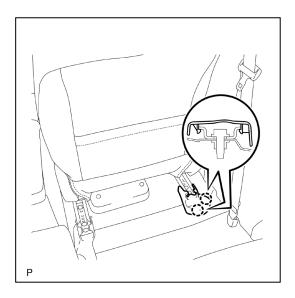

Во избежание серьезных травм или смертельного исхода не выполняйте разборку системы высокого напряжения, пока напряжение на клеммах в контрольной точке не станет равным 0 В.

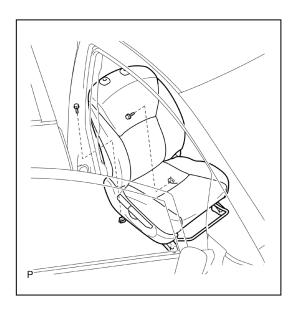


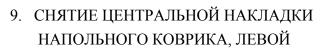
Рекомендация.

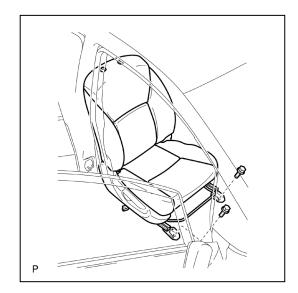

Для измерения напряжения установите диапазон тестера на 750 В постоянного тока. Данная проверка выполняется для того, чтобы определить, безопасна ли высоковольтная АКБ для снятия.

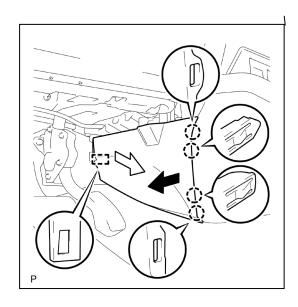
- 7. СНИМИТЕ ПОДГОЛОВНИК ПЕРЕДНЕГО СИДЕНЬЯ В СБОРЕ.
- 8. СНИМИТЕ ПЕРЕДНЕЕ СИДЕНЬЕ В СБОРЕ, ПРАВОЕ.
 - (1) Поднимите рукоятку регулировки сиденья по направляющим и отведите сиденье в крайнее заднее положение.
 - (2) Высвободите 2 фиксатора и снимите переднюю внутреннюю накладку кронштейна направляющей сиденья.
 - (3) Высвободите 2 фиксатора и снимите переднюю наружную накладку кронштейна направляющей сиденья.



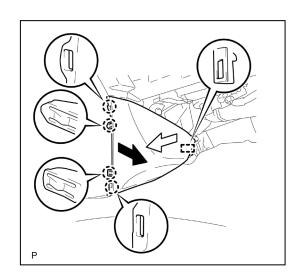

- (4) Поднимите рукоятку регулировки сиденья по направляющим и отведите сиденье в крайнее переднее положение.
- (5) Высвободите зажимную лапку.
- (6) Высвободите направляющую и снимите заднюю внутреннюю накладку кронштейна направляющей сиденья.

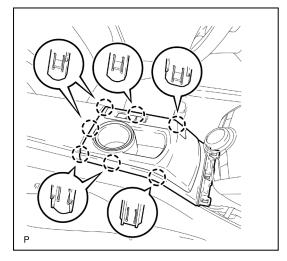

(7) Высвободите 2 фиксатора и снимите заднюю наружную накладку кронштейна направляющей сиденья.


- (8) Выверните 2 болта со стороны задней части сиденья.
- (9) Поднимите рукоятку регулировки сиденья по направляющим и отведите сиденье в крайнее заднее положение.

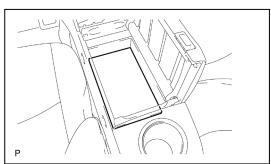


- (10) Выверните 2 болта со стороны передней части сиденья.
- (11) Поднимите рукоятку регулировки сиденья по направляющим и отведите сиденье в центральное положение. Кроме того, переведите спинку сиденья в вертикальное положение при помощи рычага регулировки угла наклона спинки.
- (12) Переведите подушку сиденья в самое верхнее положение при помощи рычага регулировки высоты подушки сиденья.
- (13) Отсоедините все разъемы и хомуты под сиденьем.
- (14) Снимите переднее сиденье в сборе.

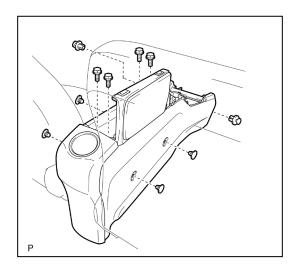

(1) Потяните переднюю центральную накладку напольного коврика, левую, в направление, указанное стрелкой, чтобы высвободить 4 фиксатора и направляющую, после чего снимите центральную накладку напольного коврика, левую.


10. СНЯТИЕ ЦЕНТРАЛЬНОЙ НАКЛАДКИ НАПОЛЬНОГО КОВРИКА, ПРАВОЙ

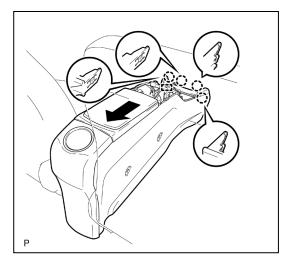
(1) Потяните переднюю центральную накладку напольного коврика, правую, в направление, указанное стрелкой, чтобы высвободить 4 фиксатора и направляющую, после чего снимите центральную накладку напольного коврика, правую.


11. СНЯТИЕ ВЕРХНЕЙ ПАНЕЛИ КОНСОЛИ В СБОРЕ

- (1) Высвободите 7 фиксаторов.
- (2) Снимите все разъемы и снимите верхнюю панель консоли в сборе.

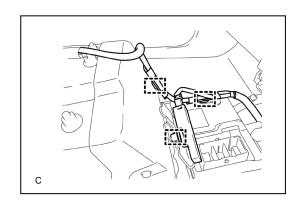

12. СНЯТИЕ ПЕРЕДНЕЙ ВСТАВКИ ВЕЩЕВОГО ЯЩИКА КОНСОЛИ № 2

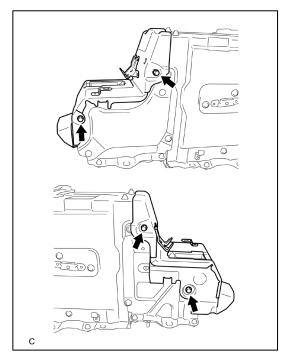
 Снимите переднюю вставку вещевого ящика консоли № 2.



13. СНЯТИЕ ВЕЩЕВОГО ЯЩИКА КОНСОЛИ В СБОРЕ

(1) Выверните 4 болта и снимите 6 зажимов.

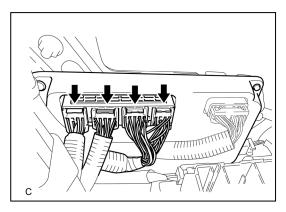

- (2) Снимите хомут.
- (3) Потяните вещевой ящик консоли в сборе в направлении, показанном стрелкой, чтобы высвободить 4 фиксатора и снять вещевой ящик консоли в сборе.



14. СНЯТИЕ ЗАЩИТНОГО ЭКРАНА АКБ ГИБРИДНОГО АВТОМОБИЛЯ В СБОРЕ № 1 Внимание!

Для выполнения следующих трех шагов необходимо надеть электроизолирующие перчатки.

- (1) Отсоедините 3 хомута.
- (2) Снимите 4 болта и защитный экран АКБ гибридного автомобиля \mathbb{N}_2 1.

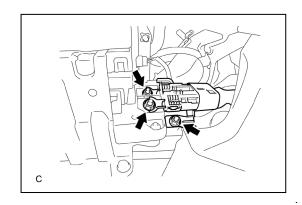


(3) Отсоедините 4 разъема от блока контроля состояния АКБ.

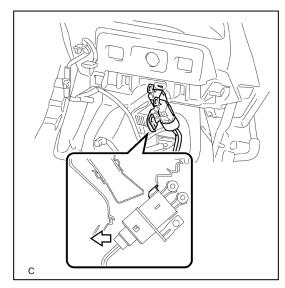
Примечание.

Изолируйте клеммы снятой электропроводки рамы изоляционной лентой.

15. СНИМИТЕ ЖГУТ ПРОВОДОВ РАМЫ

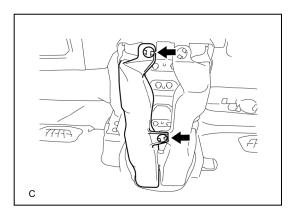

Внимание!

Для выполнения следующих двух шагов необходимо надеть электроизолирующие перчатки.

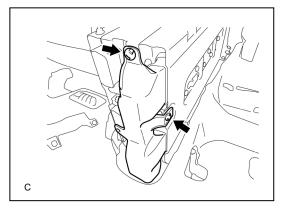

Примечание.

Изолируйте клеммы снятой электропроводки рамы изоляционной лентой.

(1) При помощи инструмента с изолированными ручками отверните 3 гайки, затем отсоедините жгут проводов рамы от распределительного блока АКБ гибридного автомобиля в сборе.



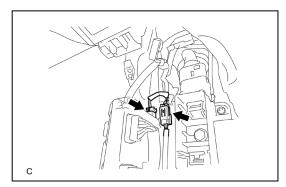
(2) Установите жгут проводов рамы, как показано на рисунке.


СНИМИТЕ ВЫПУСКНОЙ КАНАЛ АКБ ДЛЯ ГИБРИДНОГО АВТОМОБИЛЯ № 1

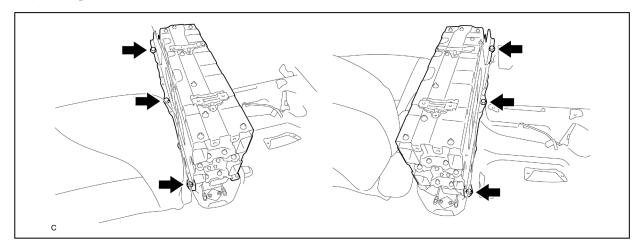
 Снимите 2 зажима и снимите выпускной канал АКБ гибридного автомобиля № 1.

17. СНЯТИЕ ВПУСКНОГО КАНАЛА АКБ ГИБРИДНОГО АВТОМОБИЛЯ № 4

 Снимите 2 зажима и снимите впускной канал АКБ гибридного автомобиля № 4.

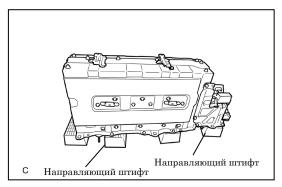

18. СНЯТИЕ АКБ ГИБРИДНОГО АВТОМОБИЛЯ В СБОРЕ

Внимание!


Работайте в электроизолирующих перчатках.

Примечание.

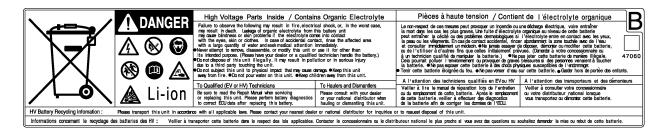
- Изолируйте снятые разъемы и клеммы изоляционной лентой.
- Поскольку высоковольтная АКБ в сборе очень тяжелая, для ее снятия необходимо
 2 человека. При снятии высоковольтной АКБ в сборе не допускайте повреждения деталей, расположенных вокруг нее.
- Для перемещения АКБ гибридного автомобиля обязательно используйте подъемник для двигателя.
- (1) Отсоедините 2 разъема.
- (2) Отсоедините напольный коврик от высоковольтной АКБ в сборе.



(3) Отверните 6 болтов.

(4) Снимите высоковольтную АКБ в сборе. Рекомендация.

Во избежание повреждений направляющих штифтов обязательно установите высоковольтную АКБ на опору для обслуживания.


19. УТИЛИЗАЦИЯ ВЫСОКОВОЛЬТНОЙ АКБ В СБОРЕ

(1) Высоковольтная АКБ в сборе подлежит утилизации. Свяжитесь с дистрибьютором Тоуоtа (если таковой указан на этикетке с предостережением на высоковольтной АКБ) или с ближайшим дилером Тоуоta (образцы этикеток с предостережением на высоковольтной АКБ приведены ниже).

Внимание!

После снятия высоковольтной аккумуляторной батареи не устанавливайте повторно фиксатор сервисного размыкателя цепи на высоковольтную АКБ.

Этикетка с предостережением на высоковольтной АКБ

